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ABSTRACT

CPC requires the reforecast-calibrated Global Ensemble Forecast System (GEFS) to support the pro-

duction of their official 6–10- and 8–14-day temperature and precipitation forecasts. While a large sample size

of forecast–observation pairs is desirable to generate the necessary model climatology and variances, and

covariances to observations, sampling by reforecasts could be done to use available computing resources most

efficiently. A series of experiments was done to assess the impact on calibrated forecast skill of using a smaller

sample size than the current available reforecast dataset. This study focuses on the skill of week-2 probabilistic

forecasts of the 7-day-mean 2-m temperature and accumulated precipitation. The tercile forecasts are ex-

pressed as being below-, near-, and above-normal temperature/median precipitation over the continental

United States (CONUS). Calibration statistics were calculated using an ensemble regression technique from

25 yr of daily, 11-member GEFS reforecasts for 1986–2010, which were then used to postprocess the GEFS

model forecasts for 2011–13. In assessing the skill of calibrated model output using a reforecast dataset with

fewer years and ensemble members, and an ensemble run less frequently than daily, it was determined that

reductions in the number of ensemble members to six or fewer and reductions in the frequency of reforecast

runs from daily to once a week were achievable with minimal loss of skill. However, reducing the number of

years of reforecasts to less than 25 resulted in a greater skill degradation. The loss of skill was statistically

significant using only 18 yr of reforecasts from 1993 to 2010 to generate model statistics.

1. Introduction

It is well known that it is necessary to postprocess di-

rect model output (DMO) from numerical weather pre-

diction (NWP) models to improve forecast skill as a

result of inherent model biases (Wilson et al. 2007;

Hamill et al. 2004). Ensembles are often not well cali-

brated (Wilson et al. 2007), tending to be underdispersive

(Hamill and Colucci 1998; Raftery et al. 2005), producing

probabilistic forecasts with unreliable probabilities that

are often overconfident (Hamill et al. 2004; Whitaker

et al. 2006). Because raw ensemble members less accu-

rately represent the uncertainty of the model with in-

creasing lead time because of error growth attributable to

chaos and model errors (Lorenz 1969), postprocessing is

especially important at longer lead times such asmedium-

range forecasts and beyond week 1 (Hamill et al. 2004;

Hagedorn et al. 2008; Cui et al. 2012). Uncalibrated

ensemble forecasts (e.g., forecast temperatures) often

produce probability forecasts with values that are

consistently too high (Johnson and Swinbank 2009).

Week-2 probabilistic temperature and precipitation

forecasts derived from the raw, uncalibrated National

Centers for Environmental Prediction (NCEP) Global

Ensemble Forecast System (GEFS) have shown nega-

tive ranked probability skill scores (RPSSs) and very

poor statistical reliability (Hamill et al. 2004, Whitaker

et al. 2006).

Reforecasts (retrospective forecasts produced by a

frozen version of an NWP model) have been commonly

used to calibrate DMO and have been shown to signif-

icantly improve forecasts on various time scales (Hamill

et al. 2004, 2008;Wilks and Hamill 2007; Hagedorn et al.

2012) by filtering the predictable signal from the un-

predictable noise (Hamill et al. 2004). Hagedorn et al.

(2008) found noticeable improvements in skill for the

ECMWF and GEFS forecasts at day 4 and beyond, with

the GEFS model benefitting the most from reforecast

calibration. Reforecasts are also important to placing
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real-time forecasts into the context of a model’s histor-

ical forecasts. It is especially important to assess how

rare or common a weather or climate event is within the

context of the model climatology (Hamill et al. 2013,

Lalaurette 2003).

A sufficiently sized reforecast dataset is required to

obtain a robust sample of past forecast errors. Enough

weather and climate scenarios must be captured by the

hindcasts to reflect the range of possible outcomes in

order to properly calibrate the real-time DMO, espe-

cially for nonnormal fields such as precipitation and for

rare events (Hagedorn et al. 2008; Hamill et al. 2008;

Hamill et al. 2013). Previous studies have shown that

using longer-term reforecasts significantly improves

forecast skill and issues related to underdispersive en-

sembles compared to using short, recent periods of

forecasts for postprocessing DMO (Cui et al. 2012;

Hagedorn et al. 2012).

The main goal of this study is to determine how sub-

sampling reforecasts based on three parameters (the

number of years, number of ensemble members, and

frequency of model runs) impacts the skill of post-

processed week-2 forecasts over the continental United

States (CONUS). This work provides an updated anal-

ysis of the sensitivity of medium-range forecast skill for

temperature and precipitation using the 2012 GEFS

model, which was needed since a previous similar study

evaluated a much older GEFS version using 1998 model

physics (Hamill et al. 2004). Other previous papers

proposed evaluating whether a large training dataset

would still reap large benefits with newer, high-

resolution models with potentially reduced systematic

errors (Hamill et al. 2004; Hagedorn et al. 2008). Ad-

ditionally, many previous studies looked at the impact of

training years andmodel run frequency of reforecasts on

forecast skill, but few, if any, examine the sensitivity to

various configurations of ensemble size (especially for

theGEFS) beyond using just the control run versus a full

set of members.

ESRL created previous reforecast datasets (including

the one used in this study), but these datasets will now be

produced at the NCEP operationally. To take advantage

of the reforecast dataset, it must be produced by the same

version as the real-time model, with the same model

initialization and data assimilation methods, physics

scheme, etc. (Hamill andWhitaker 2006; Hagedorn et al.

2012). When NCEP releases an upgraded version of the

GEFS, a complementary reforecast dataset is needed to

calibrate forecasts. Since the production of reforecasts

requires considerable computational and human re-

sources and would likely require resources shared with

that of the operational real-time GEFS, it is desirable for

NCEP to be able to produce the GEFS at a cheaper

reforecast configuration without greatly reducing the skill

of operational forecasts. This study was largelymotivated

by the need to find an optimal subset of reforecasts that

decreases the resources needed to produce them but re-

tains significant skill for forecasts produced at the weekly

time scale. Some results and the main recommendations

from this study were included in a collaborative white

paper by Hamill et al. (2014), with sensitivity results

from a number of national centers as well as a proposed

configuration. The results from this white paper helped

determine the configurations for NCEP’s operational

reforecast production.

Each day, CPC issues official daily 6–10- and 8–14-day

probabilistic tercile forecasts of the mean near-surface

temperature at 2m (hereafter referred to as surface

temperature) and accumulated precipitation over the

CONUS and Alaska. The statistical–dynamical tool

being examined in this study, referred to as the refor-

ecast tool, is one of the most used guidance tools by

CPC’s forecasters. This tool uses the current GEFS re-

forecasts to perform calibration on real-timeGEFS data

to produce 6–10-day and week-2 forecasts of tempera-

ture and precipitation expressed as probabilistic terciles,

similar to the official forecasts. A similar postprocessing

method can be applied to any dynamical model with

reforecasts. CPC is also using the reforecast tool to

produce week-2 probabilistic forecasts of extremes,

which serves as the main guidance for a new, experi-

mental, probabilistic week-2 hazards forecast.

Below we first describe the datasets used in this study,

as well as the framework of the sample size experiments,

and an overview of the statistical techniques used for

calibration and verification (section 2). Then, we present

the results of the skill sensitivity tests, including seasonal

variations in skill (section 3). Finally, we discuss our

conclusions and recommendations regarding an optimal

subset of reforecasts for calibrating week-2 temperature

and precipitation forecasts (section 4).

2. Datasets and methods

Below, we describe the reforecast and verification

datasets, explain the framework of the sample size ex-

periments, and present the postprocessing and verifica-

tion methodology used in this work.

a. Training data and forecast datasets

The reforecast dataset serves as both the training

dataset as well as the source of forecasts being cali-

brated in this study. This dataset consists of 25 yr of

once-daily, 11-member ensemble reforecasts from the

legacy ‘‘frozen’’ 2012 version 10 of the NCEP GEFS

model (Hamill et al. 2013). The resolution of the model
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is T254L42 (;40 km at 408 latitude) during the first

8 days and T190L42 (;54 km at 408 latitude) from days

8 to 16. We use 25 yr of reforecasts to train the refor-

ecast tool (1 December 1985–30 November 2010) and

evaluate calibrated GEFS forecasts (valid dates cen-

tered at 1 January 2011–31 December 2013) for a 3-yr

period following the training period. Therefore, the

forecasts being verified are independent from the

training data.

This study assessesweek-2 (days 8–14) forecasts of 7-day

mean 2-m temperature and accumulated precipitation.

The tercile forecasts are expressed as three categories:

below-, near-, and above-normal temperature/median

precipitation, similar to CPC’s official 8–14-day out-

looks. The three categories are defined as being below

the 33rd percentile, between the 33rd and 67th per-

centiles, and above the 67th percentile of the climatolog-

ical distribution of observed temperature and precipitation,

respectively. The tercile thresholds (33rd and 67th per-

centiles) were obtained using the climatology derived from

the entire reforecast dataset (1986–2010). Our domain of

interest is over the CONUS.

To calculate the calibration statistics, the daily anal-

ysis fields of the GEFS reforecast control run (consid-

ered the ‘‘day zero’’ of the model runs) were used as a

proxy for the paired ‘‘observations’’ to the past forecasts

to train the reforecast tool. The analyses were obtained

by averaging four update cycles of the model (0000,

0600, 1200, and 1800UTC) daily, where 0000 UTC is the

initialization field from the Global Data Assimilation

System (GDAS) reanalysis. Daily observations were

converted to 7-day means, matching the format of fore-

casts used to train the reforecast tool. We elected to use

the GEFS analyses as the observations for deriving the

statistics for a few reasons. First, our group has experi-

enced that there can be nonnegligible discrepancies in the

forecast and observation grids associated with topo-

graphical features and sparse observation networks, and

that by using amatchingmodel grid analysis, the fields are

more comparable. Compatible forecast and training ob-

servation grids produce smoother, more physically re-

alistic calibrated forecasts (Fundel et al. 2010). Second,

using currently available observation datasets to train the

model would have suggested that we have a high degree

of trust in the accuracy of the dataset, which is not nec-

essarily the case. We confirmed this by comparing the

skill of the reforecast tool using both observation- and

analysis-based training data, and the difference was in-

significant (results not shown).

The climatological mean of observations (used for

deriving observation anomalies from the reforecast

data) for each verification date was determined by

pooling the observation data for 31 dates centered on

each day of the year, and triangularly weighting dates

such that the center date is given the greatest weight and

weights decrease to zero at 16 days earlier and later.

It should be noted that the overall skill of the refor-

ecast tool presented in this study is likely degraded

(relative to the potential skill of a reforecast-based tool)

as a result of a known land surface error in the 2012

GEFS model (Hamill et al. 2013), as well as changes in

the datasets used for model initialization, contributing

to significant model biases. Errors in land surface types

and the initialization of soil conditions likely affect the

response of the model to specific conditions and climate

modes of variability, such as ENSO. However, these

potential model biases are present in all subsets of the

reforecast data used and should not impact the conclu-

sions of this study on the relative skill of reforecast

subsets.

b. Verification datasets

Week-2 mean surface temperature and precipitation

forecasts and verifying observations used in this study

are over the CONUS domain, including 205 stations for

temperature and 100 for precipitation (Fig. 1) (there

are fewer stations for precipitation as a result of having

dry station statistics for only a limited number of sta-

tions readily available; for the details of the method-

ology, see the appendix). The gridded forecast data

were interpolated to station data to match the format of

the observational dataset. This was done by using the

nearest-neighbor method, where the closest gridpoint

value was used for a station.

The observational data used for verification is

expressed in terms of which one of the three categories

the observation fell in at each location, where the tercile

thresholds are defined using the 30-yr climatology from

1981 to 2010 derived from the station observational

dataset. The 7-day mean temperature and accumulated

precipitation observed values were calculated using

CPC’s daily station observations (CPC precipitation/

temperature tables; CPC 2016). This serves as an in-

dependent observation dataset for fairly assessing the

skill of the forecasts (as opposed to using the reforecast

model analyses as the observations).

This CPC station dataset was used for verification

because of the following reasons. 1) It was desirable to

use the same format of verification data as the other

forecast guidance tools used at CPC (mostly in station

format) to enable comparison to other tools in other

evaluations. 2) NCEP reanalysis data are not updated

with timeliness required for real-time verification, pre-

cluding these results from being consistent with real-

time skill evaluation. Different datasets were used for

verifying and training because we think it is important
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that an independent dataset is used for evaluation. This

gives a more objective, fair benchmark of forecast skill

expected in real-time operational forecasts. Previous

verification tests we have done have shown that using

the same training datasets for verification can inflate

skill scores relative to real-time results.

c. Sample size experiments

To test the sensitivity of the forecast skill to the size

of the reforecast dataset, we created 12 different con-

figurations or subsets of reforecast data (including a

control configuration that includes all data in the

reforecast data pool) to calculate the calibration sta-

tistics. These subsets of data are aggregated based on

varying three parameters of the reforecast configu-

ration: 1) the number of years, 2) the number of

ensemble members, and 3) the frequency of model

runs (referred to as the model run frequency).

Configurations were chosen to cover various possible

combinations of reforecast parameters, including

smaller configurations that may indicate ‘‘break-

points,’’ in which the skill significantly drops from

larger sample sizes. Table 1 describes the various

configurations considered.

References to the number of ensemble members

include the control run (e.g., 11 members refers to 10

members plus the control run). A configuration with

only one member (configuration number 11) includes

only the control run member. Subsets of training data

with a model run frequency of once per week only

include reforecast data from Thursdays and those

with a twice per week frequency include Mondays

and Thursdays. Thursday was selected to be consis-

tent with other previous studies (Hagedorn et al.

2012), and Monday was used to approximate evenly

skipped days.

FIG. 1. Station locations of temperature and precipitation forecasts and observations verified

in this study. Green triangles represent locations where both temperature and precipitation

data are available. Blue circles indicate locations where only temperature data are available.

TABLE 1. List of reforecast dataset configurations used for calibrating forecasts with the specifications of the three changing parameters of

the dataset: number of years, number of ensemble members, and model run frequency.

Configuration No. No. of years Years No. of ensemble members Model run frequency

0 (control) 25 1986–2010 11 Daily

1 10 2001–10 11 Daily

2 25 1986–2010 6 Daily

3 25 1986–2010 11 Twice per week

4 25 1986–2010 11 Once per week

5 25 1986–2010 6 Once per week

6 10 2001–10 11 Once per week

7 10 2001–10 6 Once per week

8 18 1993–2010 6 Once per week

9 25 1986–2010 3 Once per week

10 10 2001–10 3 Once per week

11 25 1986–2010 1 Once per week
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d. Methodology

The term postprocessing typically refers to the gen-

eral concept of applying statistical corrections to

DMO. There are a variety of widely accepted and

practiced methods of postprocessing DMO, such as

analog techniques (Hamill and Whitaker 2006), non-

homogeneous Gaussian regression (NGR), logistic

regression, Gaussian ensemble dressing (Wilks and

Hamill 2007), Bayesianmodel averaging (Raftery et al.

2005), ensemble kernel density model output statistics

(EKDMOS; Glahn et al. 2009; Veenhuis 2013), and

ensemble regression (ER; Unger et al. 2009), as well as

newer techniques such as censored shifted gamma

distributions (CSGD), which focuses on calibrating

non-Gaussian forecast quantities (Scheuerer and

Hamill 2015). ER was chosen as the postprocessing

method for the reforecast tool because it retains more

of the information from the individual model forecast

member solutions with the benefit of only needing to

derive regression coefficients using the ensemble

mean. Basing regression statistics on only the ensem-

ble mean allows statistics to be derived from a smaller

number of ensemble members in the reforecast train-

ing dataset while allowing as many members as possi-

ble in the real-time model forecasts. The ER method

accomplishes the following. 1) Model bias is corrected

through removal of themodel climatology. 2) Variance

of model forecasts is corrected to observed variance in

standardizing anomalies. 3) Uncertainty represented

by the ensemble spread is corrected according to the

mean correlation and mean ensemble spread to im-

prove the reliability of the probabilities. 4) Low skill

anomaly forecasts are damped such that the predicted

probability distribution resembles climatology and

tercile probabilities approach a third. EKDMOS has

been used for many years by Meteorological Devel-

opment Laboratory (MDL) to produce reliable fore-

casts, including out to week 2 (Glahn et al. 2009). ER

shares many common characteristics with EKDMOS.

Both techniques utilize linear regression to adjust en-

semble kernel distributions. Since linear regression is

probably the most used postprocessing technique over

the history of objective weather and climate fore-

casting (Glahn et al. 2009), a benefit of using ER is that

it is based on a well-established, relatively straight-

forward methodology, minimizing potential error at-

tributed to using a more complex technique when

focusing on sensitivity studies.

Using the ER method, 12 sets of statistics were gen-

erated using the training data for each of the reforecast

configurations in Table 1. The calibration statistics were

smoothed temporally using the triangular mean method

(15 days before and after the center date), avoiding

potential issues that arise from seasonally varying sys-

tematic errors (Hagedorn et al. 2012). We opted to use

the same window for both temperature and pre-

cipitation, and felt that greater than 30 daysmay weaken

the signals associated with typical synoptic patterns for

the weekly period, such as including events from another

season. Statistics were calculated for each calendar day,

allowing the forecasts to be calibratedwith a unique set of

statistics daily. Reforecast configurations with skipped

days (nondaily model run frequency) benefit from the

compensation of using more training years because of the

greater number of days that would be incorporated in

each calendar day of the calibration statistics. Temporal

smoothing of calibration statistics may reduce the impact

of reductions in the number of ensemble members in

reforecast subsets in this study, because the additional

noise in the model ensemble mean with fewer ensemble

members may be reduced through temporal averaging

across multiple initialization days.

The following steps are taken (using the past forecasts

and ‘‘observations’’) to derive the statistics for each of

the reforecast configurations: 1) calculate the covariance

between the forecasts and associated observations and

the respective variances, 2) use the covariance and var-

iances to calculate correlations between the ensemble

mean forecasts and observations, and 3) use the corre-

lation values and sample standard deviations from the

forecasts and observations to calculate the regression

coefficients. An extra step is performed for precipitation

since ER assumes that the ensemble member errors are

Gaussian distributed about each member. We do a log

transformation of the precipitation amounts, such that

the member error is assumed to be proportional to the

precipitation amount, and the regression is between

forecast and observed log-precipitation values.

Zero precipitation forecasts and observations are not

separated from the regression. However, values below

1mm (log precipitation 5 0) were considered to be no

measurable precipitation and assigned a log-precipitation

value of 22 (or 0.01mm). Errors for zero precipitation,

either forecast or observed, are relative to a value of22.

In especially dry areas where zero or trace amounts of

precipitation frequently occur, errors in the probability of

precipitation above 1mmwill play a significant role in the

estimated ensemble member errors.

To calibrate the individual ‘‘real time’’ forecast

members using ER, the following procedure is per-

formed for each of the reforecast configurations: 1) en-

semble member forecast anomalies are calculated by

subtracting the model climatological mean generated

using the data included in the reforecast configuration,

2) standardized forecast anomalies are generated using
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the model variance included in the reforecast configu-

ration, 3) anomalies are multiplied by correlations

previously derived from the ensemble mean and ob-

servations, 4) linear regression is applied to all 11 in-

dividual ensemblemembers using the derived statistics,

and 5) all ensemble members are dressed with Gauss-

ian kernel distributions (see, e.g., Hastie et al. 2009) to

represent the expected error of the ‘‘best member’’ and

describe the error in the ensemble distribution. The

Gaussian kernel distributions about individual ensem-

ble members are summed to form the full calibrated-

probability distribution of the ensemble forecast,

before calculating tercile probabilities. It should be

noted that the model anomalies, variances, and co-

variances with observations were calculated based on

the years and dates of each configuration.

Week-2 probabilistic temperature and precipitation

forecasts were evaluated over the CONUS from 2011

to 2013 (3 yr) using three skill score metrics: RPSS,

Heidke skill score (HSS), and reliability (Wilks 2006).

We focus mainly on RPSS and reliability because these

metrics assess the probabilistic aspect of the forecasts.

Additionally, we review the skill of forecasts broken

down by 3-month seasons to see if there is a seasonal

component in the behavior of forecasts to reforecast

subsampling. The statistical significance of skill score

differences was determined using a bootstrapping

method, resampling sample scores across the various

reforecast configurations 10 000 times. Bootstrapping

assumes that resampled statistics are drawn from in-

dependent and identical distributions to the evaluation

period (2011–13), and so statistical significance is

evaluated relative to the same period. This method was

chosen because it is our intent to test the calibration of

recent forecasts from prior reforecasts.

Reliability diagramswere constructed by using 10 bins

of forecast probabilities. For each of these bins, a cu-

mulative count across all categories of forecasts and

observations is taken to obtain a reliability value:

reliability5 (O
A
/F

A
)1 (O

B
/F

B
)1 (O

N
/F

N
) , (1)

where subscriptsB,N, andA represent the below-, near-,

and above-normal (median) categories for temperature

(precipitation); F is the number of forecasts of the

specified category with a probability that is within the

range of the probability bin being assessed; and O de-

notes the number of occurrences where the forecast

within that probability bin correctly forecast that cate-

gory. This format of the reliability score represents how

frequent the correct category is forecast compared to the

forecast probability, assessed cumulatively across the

three categories for each probability bin. Reliability

values are plotted as a function of the probability bin

being assessed.

3. Results

a. Sensitivity to reforecast dataset size

Average HSS and RPSS results for temperature and

precipitation are plotted as a function of decreasing

configurations of the three parameters (number of

training years, number of ensemble members, and

model run frequency) to assess possible configuration

thresholds that lead to a significant drop in skill (Fig. 2).

Configurations were selected so that one reforecast

parameter changes but the other two parameters have

the same value, isolating the changes of a specific pa-

rameter. Vertical red lines indicate the first encoun-

tered decrease in skill with a significance level greater

than or equal to 90% (going from configurations with

greater sample size to less). Our results show that re-

ducing the number of years of the reforecast dataset

used for training the reforecast tool leads to the

greatest drop in skill, while the least loss is associated

with reducing the model run frequency. Similar find-

ings were evident in the Hamill et al. (2004) evaluation

of 6–10-day/week-2 reforecast-calibrated forecasts us-

ing the older 1998 version of the GEFS model, and the

2005 version of the ECMWF model (Hamill and

Whitaker 2015). This minimal skill loss associated with

skipping model runs may be attributed to forecast er-

rors being highly correlated when the days are closer

together, thus reducing the effective sample size

(Hamill et al. 2008; Hagedorn et al. 2008). Hamill et al.

(2004) actually found an improvement in skipping days

in the reforecast sample, which was attributed to

having a sample that spans a wider range of meteoro-

logical scenarios than those captured by daily forecasts

with fewer years. Sensitivity studies performed by the

MDL found skill improvement in skipping reforecast

days as well when looking at days 1–8 wind and pre-

cipitation types (Hamill et al. 2014).

There is some skill sensitivity to using fewer en-

semble members. Both HSS and RPSS show statisti-

cally significant degradation in skill when using fewer

than six ensemble members and drastic skill loss when

using only one member. Hamill and Whitaker’s re-

forecast sensitivity study of the 2005 version of the

ECMWF (Hamill and Whitaker 2015) found that

three members was a sufficient number for calibrating

the 6–10-day temperatures, with a range from five to

seven members adequate for precipitation. There may

be greater gains for the GEFS model using at least

six members for temperature forecasts because the

current, higher-resolution 2013 version of the ECMWF
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model has superior skill to the 2012 GEFS. Hamill et al.

(2004) showed that even though the control run was

comparable to using the 15-member ensemble mean,

there was a greater skill degradation for precipitation

and week-2 forecasts. The benefit of adding more en-

semble members decreases as the ratio of the predict-

able signal (i.e., ensemble mean anomaly) to the

unpredictable noise (i.e., ensemble spread) increases

(Hamill et al. 2004). By the week-2 time scale, this ratio

likely becomes smaller as a result of the increasing

unpredictable noise component, making it necessary to

have at least a few members to capture information

about the uncertainty.

Our results support the well-known fact that the skill

of precipitation is more sensitive to reforecast configu-

rations than temperature. For example, the reliability

curves from our precipitation forecasts have greater

spread among varying reforecast configurations than for

temperature and there are quicker, steeper drops in skill

with smaller reforecast configurations. The skill for

precipitation forecasts starts to decrease when dropping

to 18 training years, although temperature only shows

skill loss when dropping to fewer than 18 training years.

Similar to the findings of Hamill et al. (2004), the RPSS

drops to nearly zero when only 10 training years are used

for calibrating precipitation forecasts. RPSS indicates

FIG. 2. (top) HSS and (bottom) RPSS of week-2, tercile category forecasts of surface temperature (blue lines) and precipitation (green

lines) from the reforecast tool as a function of the (a),(d) number of years of training data, (b),(e) ensemble members, and (c),(f) model

run frequency. Skill scores represent the average score across the CONUS for forecasts valid from dates centered on 1 Jan 2011–31 Dec 2013

(3 yr). Vertical red lines indicate the first encountered decrease in skill with a significance level greater than or equal to 90% (going from

configurations with greater sample size to lower). Subsequent skill differences (both positive and negative) are significant.
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greater loss in skill for temperature than precipitation

when dropping to fewer than six ensemble members and

successively fewer members. On the other hand, there is

minimal skill loss for both temperature and precipitation

when reducing model runs from daily to once per week.

More skill loss is observed for precipitation, compared

to temperature, when dropping from two to one run per

week. Precipitation is likely more sensitive to lower re-

forecast configurations because this quantity may be rare

at many locations requiring longer periods of training

data to adequately sample and calibrate precipitation

events, compared to temperature, which is a continuous

quantity (Müller et al. 2009).

Reliability diagrams (Fig. 3) yield results similar to

those of theHSS andRPSS line plots (Fig. 2). In general,

for both temperature and precipitation, dropping to 10

training years and fewer than threemembers significantly

decreases the reliability. The exception to this is the re-

liability of precipitation forecasts associated with chang-

ing the number of ensemble members. In this scenario,

the reliability for precipitation is similar between using

one and three members. This is likely because of a sta-

tistical artifact attributed to fewer members producing a

lower correlation estimate and lower probabilities as a

result of greater noise in the ensemble mean. The lower

forecast probabilities produced by fewer members may

FIG. 3. Reliability diagrams for (top) temperature and (bottom) precipitation as a function of the (a),(d) number of years of training data,

(b),(e) ensemble members, and (c),(f) model run frequency.
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coincidentally align more closely with the reality of the

naturally high uncertainty of precipitation forecasts

rather than intentionally and accurately estimating the

true correlation and uncertainty.

Since our results show that the number of training years

in the reforecasts impacts skill the most, we focus on this

parameter to determine whether there are region-specific

impacts to skill using subsamples of reforecasts for cali-

bration. Because the drop in HSS and RPSS (averaged

over the CONUS and all available forecast dates) is

greatest for both temperature and precipitation when

dropping from 18 to 10yr (compared to from25 to 18), we

evaluate the spatial aspect of the skill change based on

these configurations. ThemeanRPSS (across 2011–13) of

calibrated forecasts using 10 training years is subtracted

from those using 18 training years, at each station (Fig. 4;

HSS not shown since the results are similar to those of

RPSS). This allows us to evaluate the skill sensitivity of

using fewer training years over various locations.

These skill maps show that there are many locations

across the CONUS that suffer significant skill loss for both

temperature and precipitation forecasts when decreasing

to 10 training years.When comparing precipitation skill to

temperature, precipitation forecasts experience more loss,

both spatially and quantitatively. In terms of regional

impacts, the greatest skill loss for temperature occurs over

Texas and areas west of, and including, the Continental

Divide. For precipitation, however, the most notice-

able skill loss is mainly across the eastern half of the

CONUS, especially along the Northeast coast. Overall,

stations with the greatest skill loss were on the order of

an HSS loss of 8 or greater (not shown), and an RPSS

loss of 0.07 or greater. Some of these areas that benefit

most from using more training years may be as a result

of having clearly detectable systematic errors, in which

the calibration corrects for statistical downscaling of

the forecasts in addition to the broader scales resolved

by the model, such as regions with complex terrain and

coastal grid points (Hagedorn et al. 2012). These areas

are typically harder to forecast for because of the di-

verse nature of their synoptic events and, thus, require

more events in the reforecast dataset to capture the

various flavors of the possible outcomes.

b. Seasonal skill sensitivity to reforecast dataset size

Skill evaluation was performed for the three years

evaluated, partitioned by 3-month seasons—December–

February (DJF), March–May (MAM), June–August

(JJA), and September–November (SON)—to explore

the potential seasonality in the impacts of lower re-

forecast configurations to forecast skill. Our findings

show that there are seasonally based impacts from

changing the reforecast configurations. Temperature

and precipitation forecasts have the highest skill as well

as the most skill sensitivity to changing reforecast

configurations during MAM (Figs. 5 and 6), followed

by DJF. JJA had the lowest skill and least sensitivity to

configuration subsampling (only MAM results are

shown). This result is evident in RPSS, HSS, and re-

liability. There is more loss in RPSS compared to HSS

when using fewer training years and ensemble mem-

bers, which may indicate that the probabilities are

more affected than the forecast categories when using

smaller reforecast configurations (Fig. 5).

Across the seasons (including those not shown), drop-

ping to 10 training years and three members leads to the

most noticeable skill loss in the temperature and pre-

cipitation forecasts. This is especially evident for MAM

precipitation (Fig. 6c), where dropping to 10 training

years results in lower reliability across most of the fore-

cast probabilities (compared to, e.g., using 18 training

years, where significant skill loss occurs at probabilities of

0.7 or greater). Model run frequency does not greatly

alter the skill of the temperature forecasts (not shown).

However, reliability diagrams do reveal degradation in

precipitation forecasts when going from two runs to one

run per week during MAM and SON, especially at

probabilities greater than 0.7 (not shown).

FIG. 4. Skill score differences at each station of RPSS averaged over 1 Jan 2011–31Dec 2013 using 18 training years

minus RPSS using 10 training years for (a) temperature and (b) precipitation forecasts.
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We also assessed reforecast configurations similar to

Hamill et al. (2004) to compare the skill and skill sen-

sitivity of the week-2 temperature and precipitationDJF

forecasts from the newer 2012 version to the older 1998

version of GEFS (evaluated by Hamill) to identify po-

tential differences in using different model versions. It

should be noted that there are some differences between

Hamill’s study and ours that may account for some of

the differences in the results. For example, our analysis

uses 25 years and 11 members, daily, while Hamill’s uses

23 training years, and 15 members daily. Differences

aside, the RPSS from the 2012 GEFS seems to be

slightly improved from those using the older 1998

GEFS, especially from configurations using the larg-

est number of training years. Our DJF temperature

(precipitation) forecasts using 25 training years yields an

RPSS of 0.18 (0.05), which is a 0.03 (0.02) improvement

over Hamill’s results using 23 training years from the

older GEFS. Our results may also indicate that the there

is more skill sensitivity to reforecast sample size using

the newer 2012 GEFS model compared to the 1998

version. Dropping from 25 to 10 training years yields a

decrease in temperature RPSS of about 0.03, whereas

using the 1998 GEFS showed a RPSS loss of 0.01 when

using 9 instead of 22 years (Hamill et al. 2004). This

difference may be attributed to a number of reasons,

such as greater skill loss with a higher-resolution,

improved model, or as a result of the years selected

for verification. There is also a possibility that the

difference when using two more training years in our

FIG. 5. As in Figs. 2a,b,d,e, but for March–May.
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study, compared to Hamill’s, contributed to more loss.

Our study included fewer members than Hamill

et al.’s (2004), which may support the concept that

using a few less members does not impact the skill as

much as using fewer training years. Precipitation

forecasts experienced about a loss of 0.01 for both

versions of the GEFS.

The regions that show the greatest skill improve-

ment in DJF temperature forecasts (using 18 instead

of 10 training years) occur over the eastern third of

the CONUS and southern Texas, whereas for pre-

cipitation improvements are greatest across many

areas west of the Continental Divide, the Southeast,

and the Ohio valley (Figs. 7e,f). These areas differ

greatly from the maps showing skill differences con-

sidering all seasons together (Fig. 4), as well as JJA

(not shown), exemplifying the seasonal and regional

variability in skill sensitivity. As a note of interest, the

FIG. 6. As in Figs. 3a,b,d,e, but for March–May.
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most skill gained by using the newer 2012 GEFS

[compared to the 1998 GEFS skill results fromHamill

et al. (2004)] is across the Upper Midwest and the

Northeast region/mid-Atlantic coast for tempera-

ture, and over California and east of the Mississippi

valley for precipitation. Using only 18 training years

(Figs. 7c,d) actually leads to some areas (such as the

south-central United States and the Southeast) hav-

ing the same or lower skill compared to the 1998

GEFS, whereas 25 training years (Figs. 7a,b) pro-

duces many more locations with improved skill, es-

pecially for temperature forecasts.

FIG. 7. RPSS at each station averaged over the evaluation period for (left) DJF temperature and (right) precipitation using (a),(b) 25

and (c),(d) 18 yr. Skill score differences using 18 training years minus 10 training years for DJF (e) temperature and (f) precipitation

forecasts. Evaluation period is 1 Jan 2011–31 Dec 2013.
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4. Conclusions and recommendations

In summary, the reduction in the number of training

years of the reforecast dataset leads to the greatest skill

loss for week-2 surface temperature and precipitation

forecasts, while model run frequency impacts skill the

least. Our findings, in addition to those of a number of

other studies (Raftery et al. 2005; Hagedorn et al. 2008,

2012), reinforce the importance of having a large number

of training years consistent with the current forecast

model for successful calibration, especially at longer

forecast leads. The gain in skill by using reforecasts with

many training years for calibration can rival the im-

provement that would take 5–10 yr of numerical model-

ing system development and model resolution upgrades

(Wilks and Hamill 2007). A long training dataset is es-

pecially important for longer leads becausemore samples

across diverse climate conditions are needed to identify

the systematic bias as the error increases with lead time

because of chaos (Hagedorn et al. 2008), with implica-

tions for the use of reforecasts for model postprocessing

for week 3 and 4 forecasts. It may be possible to obtain

reforecasts with diverse climate conditions from fewer

years through the careful selection of the reforecast years;

however, avoiding introducing other systematic biases

through the selection criteria may be difficult.

We determine that fewer members are needed in

reforecasts for the calibration to be effective, as long

as the real-time run ensemble has more members

(currently the 2012 GEFS has 21 real-time members)

(Hamill and Whitaker 2015). In general, using

reforecasts with only one model run per week in-

stead of two seem to retain the most skill as the bias

can still be calculated well, although it does lead to

precipitation forecast probabilities that are much

more poorly calibrated. The most significant drop in

forecast skill occurs when decreasing the reforecast

configuration to 10 training years and one ensemble

member (i.e., the control run).

The regions most sensitive to reducing the reforecast

configuration to 10 training years are Texas and areas

west of, and including, the Continental Divide for tem-

perature, and the eastern half of the CONUS for pre-

cipitation, especially along the Northeast coast. Regions

impacted most by lower reforecast configurations differ

depending on the temporal aggregation for evaluation,

such as for various seasons. Overall, the RPSS and re-

liability diagrams show a greater degree of variance in

skill than does HSS with changing reforecast configu-

rations and are therefore better indicators of the sensi-

tivity of skill to the sample size of the training dataset.

This indicates the advantage of a larger sample of

reforecasts for making improvements in reliability and

resolution. The results from these skill metrics are es-

sential because they evaluate the quality of the proba-

bilistic attributes of the forecasts.

To retain week-2 surface temperature and precipitation

skill, CPC provided the recommendation to NCEP that

the reforecast dataset have as many years as possible (at

the very minimum, 18 years), six ensemble members (five

members plus a control run), and amodel run frequency of

once per week. Skipping days between forecast samples

and only running the reforecast with a few members can

significantly reduce the cost of the production of the

reforecasts (Hamill et al. 2004) without compromising the

forecast skill for theweek-2 temperature andprecipitation.

However, CPC would prefer to have 30yr of reforecast

data, for two reasons. First, 30yr would match the number

of years used as a standard for climatology at CPC (and

most other meteorological centers). This would allow the

climatologies of the model forecast to be matched to our

observation climatologies for more accurate calibration

and avoid adjustments needed to determine the category

thresholds. Second, there must also be enough reforecast

data to sufficiently capture the systematic errors associated

with a variety of synoptic events (Wilks and Hamill 2007).

This is of importance to CPC because the reforecast tool is

currently being used as the basis of the week-2 probabi-

listic extremes forecast tool, which serves as the main

guidance product for the week-2 probabilistic hazards

forecasts issued by CPC. For extremes, the importance of

reforecast data with long, consistentmodel climatologies is

well understood (Hagedorn et al. 2008; Vitart et al. 2008).

Theremust be enough years to include a sufficient number

of independent samples of rare weather events and pat-

terns to properly calibrate the forecasts, especially when

working with forecasts at longer leads (Hamill et al. 2006).

Recent studies have shown that uncommon, high-impact

forecast parameters such as heavy precipitation and high

winds (e.g., greater than or equal to 10kt, where 1kt 5
0.51ms21) tend to be more sensitive to reforecast sample

size than those that are more common such as light pre-

cipitation (Hamill et al. 2014). Since there is increasing

focus on extreme events that are of high impact, it is im-

portant to ensure that reforecasts can be used to properly

calibrate the model forecasts for accurate guidance. The

hydrological community has also expressed a need for a

long reforecast dataset spanning 30yr or greater for cali-

brating and validating the characteristics of streamflow

forecasts over a large sample of high-impact cases (Hamill

et al. 2014).

This study has helped to inform NCEP of re-

quirements for the reforecast configuration for upcom-

ing updated datasets. Based on the requirements

provided in the collaborative white paper (Hamill et al.

2014), NCEP will be producing reforecasts in the
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upcoming months for the new operational GEFS (ver-

sion 11), which was updated in December 2015. These

will be produced with the configuration of 20 years, five

ensemble members, and runs once every 4 days. Other

previous work has also shown that at least 20 years of

reforecasts sufficiently improves the forecast skill for

many thresholds (including rare events), as well as the

lead times for precipitation (Fundel et al. 2010). This

study only included discrete selected configurations to

cover a range of sample sizes, which is why the overall

collective reforecast white paper recommendations

(Hamill et al. 2014) slightly differ from the requirements

as indicated by our results (e.g., we did not assess 20

training years specifically). This work and our current

real-time reforecast tool forecasts (as of December

2015) use the legacy model runs from GEFS version 10,

but we will be regenerating the calibration statistics

using the reforecasts from the updated GEFS version 11

once the new dataset is available.

Acknowledgments. The authors thank ESRL for pro-

viding the reforecast data used in this study, TomHamill

(ESRL) for his discussions regarding reforecasts and

model postprocessing, and David Unger for his com-

ments, edits, and contributions in theCPC reforecast tool

project and evaluation.

APPENDIX

Dry Station Verification Methodology

CPC’s forecast format requires that precipitation ob-

servations be placed in one of three equally likely cate-

gories based on climatology. A pentad with no reported

precipitation (trace amounts are reported as zero in CPC’s

dataset) is always classified as ‘‘below normal.’’ When the

climatological probability of no precipitation at a given

location exceeds 33% (defining a ‘‘dry’’ station), then it is

no longer possible to classify observations into three equal

categories, and adjustments to the verification methodol-

ogy are needed. The following steps outline the treatment

of dry stations in CPC verifications:

Step 1—create a climatology for the percentage of

pentads with no precipitation for eachmonth and each

station based on the 1971–2000 period, which will be

referred to as percentage no precipitation (PNP);

Step 2—classify a station as either arid, semiarid,

or normal according to the definitions listed in

Table A1;

Step 3—define a dry station as one in either an arid or

semiarid location; then, reclassify all forecasts and

observations at these locations as either above or

below normal based on the following definitions:
d For arid stations,

d all near-normal forecasts are converted to below-

normal forecasts and
d all near-normal observations are reclassified as

below-normal observations;
d For semiarid stations,

d all near-normal forecasts are converted to below-

normal forecasts and
d all near-normal observations are reclassified as

below-normal observations; and
d For normal stations,

d all forecasts and observations are left as they are.

Step 4—estimate the expected percent of correct fore-

casts by chance (last column in Table A1) for each of

the three categories (below, normal, above) based on

the dry station climatology;

Step 5—sum the expected correct percentages and the

number of correct forecasts over all categories for

each location prior to the calculation of the HSS,

defined by

HSS(%)5 1003 (H2E)/(T2E) , (A1)

whereH is the number of forecasts with the correct

category, E is the expected number of correct fore-

casts by chance, and T is the total number of forecast–

observation pairs. For regional summaries, summa-

tions over all stations (combining dry and normal

stations) are performed prior to the calculation of

the HSS.

TABLE A1. Threshold percentage of pentads with no precipitation (center column) and the estimated expected percent of correct

forecasts by chance for each of the three categories of below, normal, and above, respectively for various climatological precipitation

classifications (left column). Percentage of no precipitation is denoted as ‘PNP’.

Climatological precipitation

classification

Threshold percentage of pentads with no

precipitation according to the dry

station climatology

Expected percent of correct forecasts by

chance for each of three categories

(below, normal, above), respectively

Arid station $67% PNP, 0, 1 2 PNP

Semiarid station $34% and ,67% 0.667, 0, 0.333

Normal station ,34% 0.333, 0.333, 0.333
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